If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-25x-39=0
a = 4.9; b = -25; c = -39;
Δ = b2-4ac
Δ = -252-4·4.9·(-39)
Δ = 1389.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{1389.4}}{2*4.9}=\frac{25-\sqrt{1389.4}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{1389.4}}{2*4.9}=\frac{25+\sqrt{1389.4}}{9.8} $
| 2w*w=40 | | (5x+1)(7x-23)=180 | | 8.83x=41.5 | | 12-7y=2- | | w/5-4=2- | | 20=5(2x-4)+2x | | n/2-9=5- | | 19w+19=6w+45 | | 4x-32=x+7 | | 5t-22=t+50 | | 7x-24=-3x+16 | | 9u+4=11u | | 4(x-3)²-4(x²-2x+1)=0 | | v+10=2v | | -2x-9=-5x-21 | | 2(x+13)=3x+4 | | 3x+2=-3x+8 | | 8x+1=2(4x-1) | | 4(x-3)²=4(x²-2x+1) | | 3x+13=-2x-22 | | 180=3x-5=2x-25=180 | | x^2+8x+500=0 | | 45.25=4w-2.5w | | 6(3x-4)-(1-3x6=-67 | | 52=780-15m | | (2k^2+k)-3=0 | | -1.7x=9(x+2.17) | | 2x^2+26x=-80 | | 4.9t^2+14t+98=0 | | A=780-15m | | -7x+5x=-18+2 | | 3.5r=168 |